Home | Issues | Profile | History | Submission | Review
Vol: 60(74) No: 1 / March 2015      

Hyperthermic Intraperitoneal Chemotherapy Equipment’s Temperature Control Structure Design using Model Based Techniques
Iulia Clitan
Department of Automation, Technical University of Cluj-Napoca, Faculty of Automation and Computer Science, 26-28 Baritiu Street, 400127 Cluj-Napoca, Romania, phone: (026) 420-2437, e-mail: iulia.inoan@aut.utcluj.ro
Vlad Mureşan
Department of Automation, Technical University of Cluj-Napoca, Faculty of Automation and Computer Science, 26-28 Baritiu Street, 400127 Cluj-Napoca, Romania, e-mail: vlad.muresan@aut.utcluj.ro
Mihai Abrudean
Department of Automation, Technical University of Cluj-Napoca, Faculty of Automation and Computer Science, 26-28 Baritiu Street, 400127 Cluj-Napoca, Romania, e-mail: mihai.abrudean@ aut.utcluj.ro
Daniel Moga
Department of Automation, Technical University of Cluj-Napoca, Faculty of Automation and Computer Science, 26-28 Baritiu Street, 400127 Cluj-Napoca, Romania, e-mail: daniel.moga@aut.utcluj.ro
Corneliu Lungoci
Department of Surgery, „Iuliu Hatieganu“ University of Medicine and Pharmacy, 8 Victor Babes Street, 400012, Cluj-Napoca, Romania, e-mail: corneliu.lungoci@umfcluj.ro


Keywords: internal model control, hyperthermic intraperitoneal chemotheraphy (HIPEC), model based techniques, model reference control, temperature control structure, peritoneal carcinomatosis.

Abstract
This paper presents the design of a temperature control structure using model based design techniques. The temperature control structure designed is used in a hyperthermic intraperitoneal chemotherapy (HIPEC) equipment to control the heating process of the cytostatic solution, delivered inside the abdominal cavity. Cytoreductive surgery followed by HIPEC represents the gold standard treatment for peritoneal carcinomatosis, a final stage of abdominal cancer. The HIPEC equipment needs to maintain a homogenous temperature for the cytostatic solution of 42˚C, thus for the design of such a control structure the authors use a Model Reference neural controller and an Internal Model Control controller. Both design techniques use the heating process model to obtain the controller. The designed control structures are compared based on their simulated step responses, since the equipment is in construction phase.

References
[1] B. Sadeghi, C. Arvieux, O . Glehen, A. C. Beaujard, M. Rivoire, and F.N. Gilly, “Peritoneal carcinomatosis from non-gynecologic malignancies: results of the EVOCAPE 1 multicentric prospective study”, Cancer, vol. 88, no. 2, 2000, pp. 358-63. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10640968.
[2] J. O. W. Pelz, T. C. Chua, J. Esquivel, A. Stojadinovic, J. Doerfer, and A. G. Kerscher, “Evaluation of best supportive care and systemic chemotherapy as treatment stratified according to the retrospective peritoneal surface disease severity score (PSDSS) for peritoneal carcinomatosis of colorectal origin”, BMC Cancer, vol. 10: 689, Dec. 2010.
[3] J. Franko, Q. Shi, C. Goldman, B. A. Pockai, G. D. Nelson, and D. J. Sargent, ”Treatment of colorectal peritoneal carcinomatosis with systemic chemotherapy: a pooled analysis of north central cancer treatment group phase III trials N9741 and N9841”, J. Clin. Oncol., vol. 30, no. 3, pp. 263-267, 2012.
[4] P. H. Sugarbaker, “Cytoreductive surgery plus hyperthermic perioperative chemotherapy for selected patients with peritoneal metastases from colorectal cancer: a new standard of care or an experimental approach?”, Gastroenterol. Res. Pract., 2012.
[5] S. González-Moreno, L. González-Bayón, and G. Ortega-Pérez, “Hyperthermic intraperitoneal chemotherapy: Rationale and technique”, World J Gastrointest. Oncol., vol. 2, no. 2, pp. 68-75, 2010.
[6] P. Cashin, H. Ehrsson, I. Wallin, P. Nygren and H. Mateme, “Pharmacokinetics of cisplatin during hyperthermic intraperitoneal treatment of peritoneal carcinomatosis”, Eur. J. Clin. Pharmaco.l, vol. 69, no. 3, 2013, pp. 533-540.
[7] R.L. Dedrick and M.F. Flessner, “Pharmacokinetic problems in peritoneal drug”, J. Natl. Cancer. Inst., vol. 89, no. 7, 1997, pp. 480-487.
[8] S. Van Ruth, R. Mathôt, R. W. Sparidans, J. H. Beijnen, and V. J. Verwaal, “Zoetmulder F a N. Population pharmacokinetics and pharmacodynamics of mitomycin during intraoperative hyperthermic intraperitoneal chemotherapy”, Clin. Pharmacokinet., vol. 43, no. 2, 2004, pp. 131-143. Available at: http://www.ncbi.nlm.nih.gov/ pubmed/14748621.
[9] P. H. Sugarbaker, K. Van Der Speeten. and O. A. Stuart, “Pharmacologic rationale for treatments of peritoneal surface malignancy from colorectal cancer”, World J. Gastrointest. Oncol.,vol. 2, no. 1, 2010, pp. 19-30.
[10] J. S. Spratt, R. A. Adcock, M. Muskovin, W. Sherrill, and J. Mckeown, “Clinical delivery system for intraperitoneal hyperthermic chemotherapy”, Cancer Res., vol. 40, 1980, pp. 256–260.
[11] P. Ortega-Deballon, O. Facy, G. Magnin, F. Piard, B. Chauffert, and P. Rat, “Using a heating cable within the abdomen to make hyperthermic intraperitoneal chemotherapy easier: feasibility and safety study in a pig model”, Eur. J. Surg. Oncol., vol. 36, no. 3, 2010, pp. 324-328.
[12] C. H. Cho, P. Wust, B. Hildebrandt, R. D. Issels, J. Sehouli, and J. Gellermann, “Regional hyperthermia of the abdomen in conjunction with chemotherapy for peritoneal carcinomatosis: evaluation of two annular-phased-array applicators”, Int. J. Hyperthermia, vol. 24, no. 5, 2008, pp. 399-408.
[13] P. H. Sugarbaker, Technical Handbook for the Integration of Cytoreductive Surgery and Perioperative Intraperitoneal Chemotherapy into the Surgical Management of Gastrointestinal and Gynecologic Malignancy, 4th ed., Michigan: The Ludann Company Grand Rapids, 2005.
[14] C. Lungoci, I. Raus, T. Oniu, D. Moga, N. Stroia, and I. A. Mironiuc, “Assessment of temperature distribution in intraperitoneal chemohyperthermia”, in IFMBE Proceeding, Cluj-Napoca, Romania, pp. 193-196.
[15] N. Stroia, D. Moga, C. Lungoci, R. Moga, and D. Petreus, “Development of a hyperthermic intra-peritoneal chemotherapy equipment architecture based on the cyber-physical system paradigm”, in Third international workshop on cyber physical systems, Bucharest: Romanian Academy, 2014.
[16] I. Clitan, D. Moga, V. Muresan, N. Stroia, C. Lungoci, V. Sita, and I. A. Mironiuc., “Design of a temperature controller for an hyperthermic inraperitoneal chemotherapy equipment”, in Proc. 10th Jubilee International Symposium on Applied Computational Intelligence and Informatics (SACI), Timisoara, Romania, 2015, pp. 49-54.
[17] T. Ladhari, Vers une methodologie integree pour la supervision en temps-reel et lóptimisation in vivo des Chimio-Hyperthermies Intra-Peritoneales (CHIP). Chemical and Process Engineering, Ecole Nationale Superieure des Mines de Saint-Etienne, France, 2007.
[18] K. Ogata, Modern Control Engineering, 5th ed., Prentice Hall: New Jersey, 2009.
[19] D. E. Riviera and M. E. Flores, “Internal model control”, Control systems, Robotics and Automation, vol. II.
[20] D. E. Rivera, Internal Model Control: A Comprehensive View, [Online], 1999. Available: http://www.chimique.usherbrooke.ca /cours/gch405/imcriveira.pdf.
[21] H. Demuth and M. Beale, Neural network toolbox user guide – For use with Matlab®, MathWorks, Inc., 2014.
[22] K. Rahnami, P. Arabshahi, and A. Gray, “Neural network based model reference controller for active queue management of TCP flows”, IEEE Aerospace Conference, Big Sky, MT, 2005, pp. 1696-1704.
[23] [Available online] on http://home.hit.no/~hansha/documents/ control/theory/pade_approximation.pdf.