Vol: 53(67) No: 4 / December 2008 Fuzzy Control of Tricycle Wheeled Mobile Robots Based on Sensitivity Analysis Stefan Preitl Department of Automation and Applied Informatics, “Politehnica” University of Timisoara, Bd. V. Parvan No. 2, RO-300223 Timisoara, Romania, phone: (+40) 256-40-3224, e-mail: stefan.preitl@aut.upt.ro, web: http://www.aut.upt.ro/~spreitl/ Radu-Emil Precup Department of Automation and Applied Informatics, “Politehnica” University of Timisoara, Bd. V. Parvan No. 2, RO-300223 Timisoara, Romania, phone: (+40) 256-40-3226, e-mail: radu.precup@aut.upt.ro, web: http://www.aut.upt.ro/~rprecup/ József K. Tar Institute of Intelligent Engineering Systems, John von Neumann Faculty of Informatics, Budapest Tech, Bécsi út 96/b, 1034 Budapest, Hungary, phone: (36-1) 666-5538, e-mail: tar.jozsef@nik.bmf.hu, web: http://www.bmf.hu Péter Korondi Department of Automation and Applied Informatics, Budapest University of Technology and Economics, Goldmann György tér, 3 – 1111 Budapest, Hungary, e-mail: korondi@elektro.get.bme.hu Igor Škrjanc Laboratory of Modelling, Simulation and Control, University of Ljubljana, Faculty of Electrical Engineering, Tržaška 25, 1000 Ljubljana, Slovenia, phone: +386 (0)1 4768-311, e-mail: igor.skrjanc@fe.uni-lj.si, web: http://msc.fe.uni-lj.si/Staff.asp?person7 Sašo Blažič Laboratory of Modelling, Simulation and Control, University of Ljubljana, Faculty of Electrical Engineering, Tržaška 25, 1000 Ljubljana, Slovenia, phone: +386 (0)1 4768-763, e-mail: saso.blazic@fe.uni-lj.si, web: http://msc.fe.uni-lj.si/Staff.asp?person15 Keywords: cascade control system, sensitivity analysis, tricycle wheeled mobile robots Abstract The paper deals with the design of fuzzy control systems for a class of tricycle wheeled mobile robots with two degrees of freedom. The design is enabled by the sensitivity analysis with respect to the parametric variations of the controlled plant. One cascade control system structure is designed. It calculates off-line generation the two reference inputs by the artificial potential field method employed for obstacle avoidance. A case study is described shortly. Digital simulation results illustrate the theoretical approach. References [1] Z.-P. Jiang and H. Nijmeijer, “Tracking control of mobile robots: A case study in backstepping,” Automatica, vol. 33, pp. 1393-1399, 1997. [2] H. Kolmanovsky and N.H. McClamroch, “Developments in nonholonomic control systems,” IEEE Control Systems Magazine, vol. 15, pp. 20-36, 1998. [3] R.-E. Precup and S. Preitl, Development method for a Takagi-Sugeno PI-fuzzy controller,” in Preprints of 15th IFAC World Congress b’02, Barcelona, Spain, paper 390, 6 pp., 2002. [4] R. Babuška and H.B. Verbruggen, “An overview on fuzzy modeling for control,” Control Engineering Practice, vol. 4, pp. 1593-1606, 1996. [5] P. Reignier, “Fuzzy logic techniques for mobile robot obstacle avoidance,” Robotics &Autonomous Systems, vol. 12, pp. 143-153, 1994. [6] H. Gartner and A. Astolfi, “Fuzzy control of a mobile robot with guaranteed stability,” in: Stability Issues in Fuzzy Control (J. Aracil and F. Gordillo (Eds.)), 323-346. Springer-Verlag, Berlin, 2000. [7] F. Cuesta and A. Ollero, “Stability analysis of fuzzy reactive navigation,” in Preprints of 15th IFAC World Congress b’02, Barcelona, Spain, paper 1799, 6 pp., 2002. [8] S. Galichet and L. Foulloy, “Fuzzy controllers: synthesis and equivalences,” IEEE Transactions on Fuzzy Systems, vol. 3, pp. 140-148, 1995. [9] K.J. Åström and T. Hägglund, PID Controllers Theory: Design and Tuning. Instrument Society of America, Research Triangle Park, NC, 1995. [10] R.-E. Precup and S. Preitl, “Sensitivity analysis of a class of fuzzy controlled mobile robots,” in Preprints of 16th IFAC World, Prague, Czech Republic, Electronic format, 6 pp., 2002. [11] H.G. Tanner and K.J. Kyriakopoulos, “Discontinuous backstepping for stabilization of nonholonomic mobile robots,” in Proceedings of IEEE International Conference ICRA 2002, Washington, DC, pp. 3948-3953, 2002. [12] R.-E. Precup, S. Preitl, C. Szabo, Z. Gyurko, and P. Szemes, “Sliding mode navigation control in Intelligent Space,” in Proceedings of IEEE International Symposium WISP 2003, Budapest, Hungary, pp. 225-230, 2003. [13] R.-E. Precup and S. Preitl, Fuzzy Controllers. Editura Orizonturi Universitare, Timisoara, 1999. [14] S. Preitl and R.-E. Precup, “An extension of tuning relations after Symmetrical Optimum method for PI and PID controllers,” Automatica, vol. 35, pp. 1731-1736, 1999. [15] S. Preitl, R.-E. Precup, J.K. Tar, P. Korondi, I. Škrjanc, and S. Blažič, “Sensitivity analysis of a class of fuzzy controlled tricycle mobile robots,” in Proceedings of 8th International Conference on Technical Informatics CONTI 2008, Timisoara, Romania, 2008, vol. 3, pp. 47-52. [16] P. Baranyi, “TP model transformation as a way to LMI based controller design,” IEEE Trans. Ind. Electron., vol. 51, pp. 387-400, April 2004. [17] Z. Petres, P. Baranyi, P. Korondi, and H. Hashimoto, “Trajectory tracking by TP model transformation: case study of a benchmark problem,” IEEE Trans. Ind. Electron., vol. 54, pp. 1654-1663, June 2007. [18] L. Horváth and I.J. Rudas, “Possibilities for application of associative objects with built-in intelligence in engineering modeling,” Journal of Adv. Comp. Intel. and Intel. Informatics, vol. 8, pp. 544-552, Sep. 2004. [19] P. Baranyi, Z. Petres, P.L. Varkonyi, P. Korondi, and Y. Yam, “Determination of different polytopic models of the prototypical aeroelastic wing section by TP model transformation,” Journal of Adv. Comp. Intel. and Intel. Informatics, vol. 10, pp. 486-493, July 2006. |