Home | Issues | Profile | History | Submission | Review
Vol: 53(67) No: 4 / December 2008 

Polar-cut Based Fuzzy Model for Petrophysical Properties Prediction
Zsolt Csaba Johanyák
Department of Information Technology, Kecskemét College, GAMF Faculty, Izsáki út 10, H-6000 Kecskemét, Hungary, phone: (36-76) 516-413, e-mail: johanyak.csaba@gamf.kefo.hu, web: http://www.johanyak.hu
Szilveszter Kovács
Department of Information Technology, Kecskemét College, GAMF Faculty, Izsáki út 10, H-6000 Kecskemét, Hungary, phone: (36-76) 516-411, e-mail: kovacs.szilveszter@gamf.kefo.hu, web: http://www.gamf.hu/portal/?q=gamf/oktato/kovacs_szilveszter_dr


Keywords: fuzzy rule interpolation, automatic rule base generation, FRIPOC, RBE-DSS

Abstract
The application of fuzzy rule interpolation (FRI) methods in fuzzy models can reduce the complexity of the fuzzy model significantly. In case of automatic model generation this reduced complexity also leads to quicker convergence of the fuzzy model. The goal of this paper is the detailed investigation of a fuzzy model construction in a real world problem, i.e. the prediction of petrophysical properties, which is an important supporting tool in taking decisions on rentability of the exploration of a specific region.

References
[1] P. Baranyi, L. T. Kóczy and T. D. Gedeon, “A Generalized Concept for Fuzzy Rule Interpolation,” In IEEE Transaction On Fuzzy Systems, Vol. 12, No. 6, 2004. pp 820-837.
[2] J. Botzheim, C. Cabrita, L. T. Kóczy and A. E. Ruano, “Fuzzy rule extraction by bacterial memetic algorithms,” in Proceedings of the 11th World Congress of International Fuzzy Systems Association, IFSA 2005, Beijing, China, July 2005, pp. 1563-1568.
[3] J. Botzheim, B. Hámori, and L. T. Kóczy, “Extracting trapezoidal membership functions of a fuzzy rule system by bacterial algorithm,” 7th Fuzzy Days, Dortmund 2001, Springer-Verlag, pp. 218-227.
[4] S. L. Chiu, “Fuzzy Model Identification Based on Cluster Estimation, Journal of Intelligent and Fuzzy Systems,” Vol. 2, 1994, pp. 267-278.
[5] A. Chong, T. D. Gedeon and L.T. Kóczy, “Projection Based Method for Sparse Fuzzy System Generation,” in Proceedings of the 2nd WSEAS International Conference on Scientific Computation and Soft Computing, Crete, Greece, 2002, pp. 321-325.
[6] Z. C. Johanyák, “Fuzzy szabály-interpolációs módszerek és mintaadatok alapján történő automatikus rendszergenerálás,” PhD dissertation, Hatvany József Doctoral School of Information Sciences, University of Miskolc, Miskolc, Hungary, 2007.
[7] Z. C. Johanyák, S. Kovács, “A brief survey and comparison on various interpolation based fuzzy reasoning methods,” Acta Polytechnica Hungarica, Vol. 3, No. 1, 2006, pp. 323-334.
[8] Z. C. Johanyák, S. Kovács, “Fuzzy modeling of Petrophysical Properties Prediction Applying RBE-DSS and LESFRI,” International Symposium on Logistics and Industrial Informatics (LINDI 2007), September 13-15, Wildau, Germany, pp.87-92, 2007.
[9] Z. C. Johanyák and S. Kovács, “The effect of different fuzzy partition parameterization strategies in gradient descent parameter identification,” 4th International Symposium on Applied Computational Intelligence and Informatics (SACI 2007), May 17-18, 2007 Timisoara, Romania, pp. 141-146.
[10] Z. C. Johanyák and S. Kovács, “Fuzzy Rule Interpolation Based on Polar Cuts,” Computational Intelligence, Theory and Applications, Springer Berlin Heidelberg, 2006, pp. 499-511.
[11] Z. C. Johanyák and S. Kovács, “Fuzzy Rule Interpolation by the Least Squares Method,” 7th International Symposium of Hungarian Researchers on Computational Intelligence (HUCI 2006), November 24-25, 2006 Budapest, pp. 495-506.
[12] Z. C. Johanyák, D. Tikk, S. Kovács and K. W. Wong, “Fuzzy Rule Interpolation Matlab Toolbox – FRI Toolbox,” Proc. of the IEEE World Congress on Computational Intelligence (WCCI\'06), 15th Int. Conf. on Fuzzy Systems (FUZZ-IEEE\'06), July 16--21, 2006, Vancouver, BC, Canada, pages 1427-1433, Omnipress.
[13] Z. C. Johanyák and S. Kovács, “Fuzzy set approximation based on linguistic term shifting, MicroCad 2006, Section N: Applied Information Engineering, Miskolc, Hungary, 2006, pp. 123-128.
[14] Z. C. Johanyák and S. Kovács, “Fuzzy set approximation using polar co-ordinates and linguistic term shifting,” 4rd Slovakian-Hungarian Joint Symposium on Applied Machine Intelligence (SAMI 2006), Herl\'any, Slovakia, 2006, pp. 219-227.
[15] Z. C. Johanyák and S. Kovács, “Sparse Fuzzy System Generation by Rule Base Extension”, 11th IEEE International Conference on Intelligent Engineering Systems, (IEEE INES 2007), 29 June – 1 July, 2007, Budapest, Hungary, pp. 99-104.
[16] F. Klawonn and R. Kruse, “Constructing a fuzzy controller from data,” Fuzzy Sets and Systems, Vol. 85, Issue 2, 1997, pp. 177-193.
[17] B. Kosko and J. A. Dickerson, “Function approximation with additive fuzzy systems,” in Theoretical Aspects of Fuzzy Control, John Wiley & Sons, 1995.
[18] B. Kosko, “Optimal fuzzy rules cover extrema,” International Journal of Intelligent Systems, Vol. 10, 1995, pp. 249 - 255.
[19] S. Kovács and L. T.Kóczy, “Application of an approximate fuzzy logic controller in an AGV steering system, path tracking and collision avoidance strategy,” Fuzzy Set Theory and Applications , In Tatra Mountains Mathematical Publications, Mathematical Institute Slovak Academy of Sciences, vol.16, Bratislava, Slovakia, 1999, pp. 456-467.
[20] L. T. Kóczy, J. Botzheim and T. D. Gedeon, “Fuzzy models and interpolation,” in M. Nikravesh, J. Kacprzyk, and L. A. Zadeh, editors, Forging New Frontiers: Fuzzy Pioneers I & II, volume 217 of Studies in Fuzziness and Soft Computing. Springer, 2007.
[21] L. T. Kóczy and K. Hirota, “Approximate reasoning by linear rule interpolation and general approximation. International Journal of Approximative Reasoning,” 9:197–225, 1993.
[22] L. T. Kóczy, K. Hirota and T. D. Gedeon, “Fuzzy rule interpolation by the conservation of relative fuzziness,” Technical Report TR 97/2. Hirota Lab, Dept. of Comp. Int. and Sys. Sci., Tokyo Inst. of Techn., Yokohama, 1997.
[23] L. T. Kóczy and D. Tikk “A survey of fuzzy interpolation techniques,” In Proc. of the International Symposium of Hungarian Researchers on Computational Intelligence, Budapest, Hungary, November 2, 2000, pp. 5–13.
[24] P. M. Larsen, “Industrial application of fuzzy logic control, in International Journal of Man Machine Studies, Vol. 12(4), 1980, pp. 3-10.
[25] E. H. Mamdani and S. Assilian, “An experiment in linguistic synthesis with a fuzzy logic controller,” Int. J. of Man Machine Studies, 7:1-13, 1975.
[26] S. Mizik, P. Baranyi, P. Korondi and L. T. Kóczy, “Comparison of alpha-cut, Modified alpha-cut, VKK and the General Fuzzy Interpolation for the Widely Popular Cases of Triangular Sets,” EFDAN\'99, Dortmund, Germany, 14-15 June, 1999, pp. 165-172.
[27] S. Mizik, P. Baranyi and L. T. Kóczy, “Widely popular cases of interpolation techniques,” 8th IEEE International Conference on Fuzzy Systems (FUZZ-IEEE\'99), Seoul, Korea, 22-25 August, 1999, pp. 389-394.
[28] R. -E. Precup, S. Preitl, and P. Korondi, \"Fuzzy controllers with maximum sensitivity for servosystems,\" IEEE Transactions on Industrial Electronics, vol. 54, June 2007, pp. 1298-1310.
[29] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications to modeling and control,” IEEE Trans. on SMC, 15:116-132, 1985.
[30] D. Shepard, “A two dimensional interpolation function for irregularly spaced data,” Proc. 23rd ACM Internat. Conf., (1968) 517-524.
[31] M. Sugeno and T. Yasukawa, “A fuzzy-logic-based approach to qualitative modeling,” IEEE Transactions on Fuzzy Systems, vol. 1, pp. 7-31, 1993.
[32] D. Tikk, T. D. Gedeon, L. T. Kóczy and G. Bíró, “Implementation details of problems in Sugeno and Yasukawa\'s qualitative modeling,” Research Working Paper RWP-IT-02-2001, School of Information Technology, Murdoch University, Perth, W.A., 2001.
[33] M. L. Tomescu, S. Preitl, R. E. Precup and J. K. Tar: Stability Analysis Method for Fuzzy Control Systems Dedicated Controlling Nonlinear Processes, in Acta Polytechnica Hungarica, Volume 4, Issue Number 3, 2007., pp. 127-141
[34] E. W. Weisstein, “Root-Mean-Square,” From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/Root-Mean-Square.html
[35] K. W. Wong and T. D. Gedeon, ”Petrophysical Properties Prediction Using Self-generating Fuzzy Rules Inference System with Modified Alpha-cut Based Fuzzy Interpolation,” Proceedings of The Seventh International Conference of Neural Information Processing ICONIP 2000, November 2000, Korea, pp. 1088 - 1092.
[36] K. W. Wong, L. T. Kóczy, T. D. Gedeon, A. Chong and D. Tikk, “Improvement of the Cluster Searching Algorithm in Sugeno and Yasukawa\'s Qualitative Modeling Approach,” in Lecture Notes in Computer Science, Vol. 2206, 2001, pp. 536–549.
[37] L. A. Zadeh, “Outline of a new approach to the analysis of complex systems and decision processes,” IEEE Trans. on SMC, 3:28-44, 1973.
[38] http://fri.gamf.hu