Vol: 60(74) No: 2 / June 2015 Evaluation of Feature Parameters from Coordinate Measurement Data Using Computational Geometry György Hermann Department of Applied Mathematics, Óbuda University, Bécsi út 96B, H-1034 Budapest, Hungary, phone: (361) 666-5539, e-mail: hermann.gyula@nik.uni-obuda.hu Gyula Hermann Department of Applied Mathematics, Óbuda University , Bécsi út 96B, H-1034 Budapest, Hungary, phone: (361) 666-5539, e-mail: hermann.gyorgy@nik.uni-obuda.hu Keywords: minimum zone, Lp-norm, straightness, flatness, circularity, sphericity Abstract Coordinate measuring machines are used to capture data points from an actual surface. The measurement data must be evaluated to yield critical geometric deviations according to the requirements specified by the designer. Functional requirements or assembly conditions on a manufactured part are normally translated into geometric constraints to which the part must conform. Minimum zone evaluation technique is used when the measured data is regarded as an exact copy of the actual surface and the tolerance zone is represented as geometric constraints on the data. In the present paper, zone-fitting algorithms for various geometric features are presented. The algorithms are based on techniques borrowed from computational geometry and use 2D and 3D convex hulls and Voronoi diagrams. References [1] G.T. Anthony, H.M. Anthony, B. Bittner, B.P. Buttler, M.G. Cox, R.Driescher, R. Elligsen, A.B. Forbes, H. Gross, s.a. Hannaby, P.M. Harris, J. Kok. “Reference software for finding Chebysev best-fit geometric elements” Precision Engineering 19 (1996) 28-36. [2] ANSI/ASME Y14.5M Dimensioning and Tolerancing. New York, American Society of Mechanical Engineers, 1994. [3] M. de Berg, O. Cheong, M. van Kreveld, M. Overmars “Computational Geometry, Algorithms and applications” Springer Verlag, Berlin, Heidelberg, 2008. [4] R. Calvo, E. Gómez, and R. Domingo “Vectorial Method of Minimum Zone Tolerance for Flatness, Straightness, and their Uncertainty Estimation” Int. Journal of Precision Engineering and Manufacturing Vol. 15, (2014) No. 1, 31-44. [5] K. Carr, P. Ferreira “Verification of form tolerances Part I: Basic issues, flatness, and straightness” Precision Engineering 17 (1995) 144-156. [6] K. Carr, P. Ferreira “Verification of form tolerances Part II: Cylindricity and straightness of a median line” Precision Engineering 17 (1995) 131-1. [7] O. Devillers, F. P. Preparata “Culling a set of points for roundness or cylindricity evaluation” INRIA Rapport de recherché no 4159 (2001). [8] O. Devillers, F. Preparata. “Evaluating the cylindricity of a nominally cylindrical point set” ACM-SIAM Sympos. Discrete Algorithms, Jan 2000, San Francisco, CA, USA. [9] P. J. Green and R. R. Sibson. Computing Dirichlet tessellations in the plane. Comput. J., 21:168{173, 1978. [10] L.J. Gubia, J. Stolfi “Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams”, ACM Transactions on Graphics 4, 74-123. [11] J. Huang, K.C. Fan, J.H. Wu “A new minimum zone method for evaluating straightness errors” Precision Engineering 23(1999) 2-8. [12] J. Huang “An exact solution for roundness evaluation problem” Computer Aided Design 31(1999) 845-853. [13] ISO/R 1001-1983 Technical drawings – Geometrical Tolerancing – Guidelines, ISO, Geneve, Switzerland. [14] B. Joe “Construction of three-dimensional DeLaunay triangulation using local transformations” Computer Aided Geometric Design, 8(1991) 123-142 [15] M.J. Kaiser, K.K. Krishnan “Geometry of the minimum zone flatness functional: Planar and spatial case” Precision Engineering 22 (1998)174-183. [16] T. Kanada, “Evaluation of spherical form errors – Computation of sphericity by means of minimum zone method and some examinations with using simulated data” Precision Engineering, 17 (1995) 281 – 289. [17] J.-Y. Lai, I.-H. Chen “Minimum zone evaluation of circles and cylinders” International Journal of Machine Tools & Manufacture 36(1996) 435-451. [18] Y.-Z. Lao, H.-W- Leong, F. P. Preparata, G. Sing “Accurate cylindricity evaluation with axis ” Precision Engineering 27 (2003) 429-437. [19] M.K. Lee “A new convex-hull based approach to evaluating flatness tolerance” Computer Aided design 29 (1997) 861-868. [20] Lei Xianqing, Zhang Chunyang, Xue Yujun, Li Jishun “Roundness error evaluation algorithm based on polar coordinate transform” Measurement 44 (2011) 345–350. [21] Li Xiuming, Shi Zhaoyao “Development and application of convex hull in the assessment of roundness error” International Journal of Machine Tools & Manucture (2007). [22] M. Morel, H. Haijtjema “Task Specific Uncertainty Estimation for Roundness Measurement” Proc. of the 3rd euspen International Conference, Eindhoven, The Netherlands, May 26th –30th, (2002) 513-516. [23] P. Mohan “Development and Verification of a Library of Feature Fitting Algorithms for CMMs” MSc Thesis, Arizona State University 2014. [24] T.S.R. Murty, S.Z. Abdin “Minimum zone evaluation of surfaces” Intenational Journal of Machine Tool Design and Research, 20 (1980) 123-136. [25] A. Rossi, S. Chiodi, M. Lanzetta “Minimum centroid neighborhood for minimum zone spherecity” Precision Engineering 38(2014) 337-347. [26] J. O’Rourke “Computational geometry in C” Cambridge University Press 1998. [27] F.P. Preparata, M. Shamos “Computational Geometry” New York Springer Verlag, 1985. [28] A. Rossi, S. Chiodi, M. Lanzetta “Minimum centroid neighborhood for minimum zone sphericity” Precision Engineering 38 (2014) 337-347. [29] G.L. Samuel, M.S. Shunmugam “Evaluation of straightness and flatness error using computational geometries techniques” Computer Aided design 31 (1999) 829-843. [30] G.L. Samuel, M.S. Shunmugam “Evaluation of circularity from coordinate and form data using computational geometric techniques” Precision Engineering 24 (2000) 251-263. [31] G.L. Samuel, M.S. Shunmugam “Evaluation of sphericity error from coordinate measurement data using computational geometric techniques” Computer methods in applied mechanics and engineering 190 (2001) 6765-6781. [32] G.L. Samuel, M.S. Shunmugam “Evaluation of sphericity error from form data using computational geometric techniques” International Journal of Machine Tools & Manufacture 42 (2002) 415-416. [33] Sariel Har-Peled “An output sensitive algorithm for discrete convex hulls” Computational Geometry 10 (1998) 125-138. [34] D.S. Suen, C.N. Chang “Application of neural network interval regression method for minimum zone straightness and flatness” Precision Engineering 20 (1997) 196-207. [35] Qing Zhang, K.C. Fan, Zhu Li “Evaluation method for spatial straightness errors based on minimum zone condition” Precision Engineering 23 (1999) 264-272. [36] N. Venkaiah, M.S. Shunmugam “Evaluation of form data using computational geometric techniques- Part II: Cylindricity error” International Journal of Machine Tools & Manufacture 47 (2007) 1237-1245. [37] M. Wang, S. Hossein Cheraghi, Abu S. M. Masud “Circularity error evaluation theory and algorithm” Precision Engineering 23 (1999) 164-176. [38] T. Weber, S. Motavalli, B. Fallahi, S. H. Cheraghi “A unified approach to form error evaluation” Precision and approximate minimum zone solution „Flatness tolerance evaluation:” Precision Engineering 26 (2002) 655-664. [39] X. Zhu, H. Ding “Flatness tolerance evaluation: an approximate minimum zone solution” Computer-Aided Design 34(2002) 655-664. [40] R.-E. Precup, M. L. Tomescu, and S. Preitl, “Fuzzy logic control system stability analysis based on Lyapunov’s direct method,” Int. J. Comput. Commun. Control, vol. 4, no. 4, pp. 415–426, Dec. 2009. |