Vol: 53(67) No: 2 / June 2008 Independent Chaotic Attractors in the State Space of Nonlinear Systems Cristina Morel Ecole Supérieure d’Électronique de l’Ouest, 4 rue Merlet de la Boulaye, 49009 Angers, France, phone: (33) 0241866743, e-mail: cristina.morel@eseo.fr, web: http://www.area.ac.co/~morel Radu Vlad Technical University of Cluj-Napoca, 103-105, Bd. Muncii, 400641 Cluj-Napoca, Romania, e-mail: radu.constantin.vlad@mis.utcluj.ro, web: http://www.major.com/~vlad Eric Chauveau Ecole Supérieure d’Électronique de l’Ouest, 4 rue Merlet de la Boulaye, 49009 Angers, France, e-mail: eric.chauveau@eseo.fr, web: http://www.area.ac.co/~chauveau Keywords: anticontrol of chaos, independent chaotic attractors, initial conditions, switching piecewise-constant controller Abstract – The present paper introduces a new techniques to generate several independent chaotic attractors by desingning a switching piecewise-constant controller in continuous-time systems. This controller can create chaos using an anticontrol of chaos feedback. It is shown that nonlinear continuous-time systems have several attractors, depending on initial conditions. We demonstrate here that the state space equidistant repartition of these attractors is on a precise zone of a precise curve, that depends on the parameters of the system. We determine the state space domains where the attractors are generated from different initial conditions. Finally, several examples are given to verify the proposed methodology. References [1] J. Deane, P. Ashwin, D. Hamill and D. Jefferies, ²Calculation of the periodic spectral components in a chaotic DC-DC converter², IEEE Transactions on Circuits and Systems I 1999, vol.46, pp. 1313-1319. [2] C. Morel, et al. ²Improvement of power supply electromagnetic compatibility by extension of chaos anticontrol², Journal of Circuits, Systems, and Computers 2005, vol. 14, pp. 757–770. [3] B. Jovica, C. Berbera and C. Unsworthb, ²A novel mathematical analysis for predicting masterslave synchronization for the simplest quadratic chaotic flow and Ueda chaotic system with application to communications², Physica D 2006, vol. 213, pp. 31–50. [4] H. Fujisakaa, T. Yamadab, G. Kinoshitaa and T. Konoa, ²Chaotic phase synchronization and phase diffusion², Physica D 2006, vol. 205, pp. 41–47. [5] G. Alvarez, F. Montoya, M. Romera and G. Pastor, ²Breaking two secure communication systems based on chaotic masking², IEEE Transactions on Circuits and Systems II 2004, vol. 51, pp. 505–506. [6] R. Lukac, K. Plataniotis, ²Bit-level based secret sharing for image encryption², Pattern Recognition 2005, vol. 38, pp. 767–772. [7] J. Lu, X. Yu and G. Chen, ²Generating chaotic attractors with multiple merged basins of attraction: A switching piecewise-linear control approach², IEEE Transactions on Circuits and Systems I 2003, vol. 50, pp. 198–207. [8] J. L¨u, X. Yu, T. Zhou, G. Chen and X. Yang, ²Generating chaos with a switching piecewise-linear controller², Chaos 2002; vol.12, pp. 344–349. [9] M. Aziz-Alaoui and G. Chen, ²Asymptotic analysis of a new piecewise-linear chaotic system², International Journal of Bifurcation and Chaos 2002; vol. 12, pp.147–157. [10] T. Ueta and G. Chen, ²Bifurcation analysis of Chen’s equation². International Journal of Bifurcation and Chaos 2000, vol. 10, pp. 1917–1931. [11] W. Tang, G. Zhong, G. Chen, K. Man, ²Generation of N-scroll attractors via sine function², IEEE Transactions on Circuits and Systems I 2001, vol.48, pp.1369–1372. [12] S. Yu, J. L¨u, H. Leung and G. Chen, ²Design and implementation of n-Scroll chaotic attractors from a general jerk circuit², IEEE Transactions on Circuits and Systems I 2005, vol.52, pp. 1459–1476. [13] Z. Li, J. Park, G. Chen, H. Young and Y. Choi, ²Generating chaos via feedback control from a stable ts fuzzy system through a sinusoidal nonlinearity², International Journal of Bifurcation and Chaos 2002, vol. 12, pp. 2283–2291. [14] X. Wang, G. Chen and X. Yu, ²Anticontrol of chaos in continuous-time systems via time-delay feedback², Chaos 2000, vol. 10, pp. 771–779. [15] C. Morel, R. Vlad and JY.Morel, ²Anticontrol of Chaos Reduces Spectral Emissions², Journal of Computational and Nonlinear Dynamics 2008; accepted, to be published. [16] MS. Peng, ²Bifurcation and chaotic behavior in the Euler method for a Kaplan-Yorke prototype delay model², Chaos, Solitons and Fractals 2004, vol. 20, pp. 489–496. [17] MS. Peng and A. Ucar, ²The use of the Euler method in identification of multiple bifurcations and chaotic behavior in numerical approximations of delay differential equations², Chaos, Solitons and Fractals 2004, vol.21, pp. 883–891. [18] M. Peng, ²Symmetry breaking, bifurcations,periodicity and chaos in the Euler method for a class of delay differential equations², Chaos, Solitons and Fractals 2005, vol. 24, pp. 1287–1297. [19] M. Kennedy, ²Three steps to chaos - part I: Evolution², IEEE Transactions on Circuits and Systems I 1993; 40, pp. 640–656. [20] L. Endersen and N. Skarland, ²Limit cycle oscillations in pacemaker cells², IEEE Transations on Biomedical Engineering 2000, vol.47, pp. 1–5. [21] C. Morel, et al. ²Generating independent chaotic attractors by chaos anticontrol in nonlinear circuits², Chaos, Solitons and Fractals 2005, vol. 26, pp. 541–549. [22] T. Wu, M. Chen, ²Chaos control of the modified Chuas circuit system², Physica D 2002, vol. 164: 53–58. [23] H. Agiza and A. Matouk, ²Adaptive synchronization of Chua’s circuits with fully unknown parameters², Chaos, Solitons and Fractals 2006, vol. 28, pp.219- 227. [24] C. Li and X. Liao, ²Lag synchronization of Rossler system and Chua circuit via a scalar signal², Physics Letters A 2004, vol. 329, pp. 301-308. [25] D. Moore and E. Spiegel, \"A thermally excited nonlinear oscillator\", Astrophys.J., 1966, vol. 143, pp. 871-887. [26] N. Baker, D. Moore and E. Spiegel, \"Aperiodic behaviour of a nonlinear oscillator\", Quart. Journal Mech. And Applied Math., 1971, vol. 24, pp. 391-422. |